Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques (UNSTIM), Abomey

Ecole Normale Supérieure de Natitingou Année académique: 2017-2018 Département de Physique Licence 2 SPCT

Examen de la Thermodynamique Physique

Durée: 3h

Exercice 1: Questions de cours

- 1) Définir un gaz parfait. Etablir à partir d'un raisonement cohérent et des hypothèses précises l'équation d'état d'un gaz parfait.
- 2) On considère un gaz réel qui subit une détente de Joule-Thomson. Etablir l'expression du coefficient ν de Joule-Thomson puis déduire la température d'inversion T_i de ce gaz au cours de cette détente.

Exercice 2

Dans les moteurs Diesel actuels, à vitesse de rotation élevée, le cycle décrit par l'air est celui représenté sur la figure ci-dessous dans le diagramme de Clapeyron.

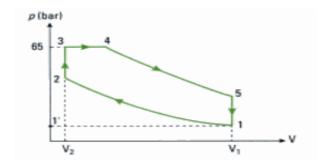


Figure 1:

- Après la phase d'admission de 1' à 1, l'air subit une compression isentropique de 1 à 2.
- Après l'injection de carburant en 2, la combustion s'effectue d'abord de façon isochore de 2 à 3 puis se poursuit de façon isobare de 3 à 4.
- La phase de combustion est suivie d'une détente isentropique de 4 à 5 puis d'une phase d'échappement isochore de 5 à 1 et de refoulement isobare de 1 à 1'.

La pression en 1 est 1bar et la température est 293K. La température maximale (en 4) est 2173K.

On suppose que l'air est un gaz parfait diatomique et on appelle α_v le rapport volumétrique de compression : $\alpha_v = \frac{V_1}{V_2} = 19$. 1) Exprimer en fonction de γ et des températures l'efficacité de ce moteur

- Diesel.
- 2) Calculer les températures T_2, T_3 et T_5 . En déduire la valeur numérique de l'efficacité e.
- 3) Déterminer le transfert thermique Q_c reçu par une masse d'air d'un kilogrammme lors de la combustion de 2 à 4.
- 4) Déterminer le transfert thermique Q_f reçu par une masse d'air d'un kilogramme lors de l'évolution de 5 à 1.
- 5) Déterminer le travail W reçu par une masse d'air d'un kilogrammme au cours d'un cycle.

Donnée : Masse molaire de l'air $M = 29g.mol^{-1}$.

Exercice 3

Une tige d'acier, initialement à la température T_0 , est fixée par une extrémité alors que l'autre est soumise à un couple de moment M variable. Il en résulte une torsion de la tige mesurée par l'angle θ ; on appelle C la "constante" de torsion, fonction des variables d'état T et M. lorsque la température varie de dT et le moment appliqué de dM la chaleur δQ gagnée de manière réversible par la tige s'écrit: $\delta Q = C_m dT + k dM$.

- 1) Donner les expressions des différentielles dU et dS de l'énergie interne et de l'entropie issues des bilans énergétique et entropique. En déduire k en fonction de T et de $\left(\frac{\partial \theta}{\partial T}\right)_M$.
- 2) Dans cette question et la suivante, C_m et $C^2\left(\frac{\partial T}{\partial C}\right)_M$ sont supposés constants. On fait varier de manière isentropique le moment M depuis 0 à sa valeur maximale M_m . Calculer la variation de la température $T_1 - T_0$ de la tige.
- 3) On applique cette fois brusquement le moment M_m , la transformation étant adiabatique. La tige atteint la température T_2 .
- a- Trouver la variation d'énergie interne ΔU_2 en fonction de M_m et C.
- b- Afin de déterminer l'écart de température T_2-T_0 , on considère une transformation réversible entre l'état initialement $(T = T_0, M = 0)$ et l'état final $(T = T_2, M = M_m)$. Trouver une autre expression de ΔU_2 en calculant le travail et la chaleur gagnés au cours de cette transformation. En déduire la variation de température $T_2 - T_0$.

Application numérique: $T_0=295K, M_m=18m.N, C_m=22,7J.K^{-1}.rad^{-1}$ et $C^{-2}\left(\frac{\partial C}{\partial T}\right)_M=0,23K^{-1}.$